Pulsed electric field-assisted overlimiting current enhancement through a perm-selective membrane.
Soonhyun KwonHyomin LeeSung Jae KimPublished in: Lab on a chip (2021)
Overlimiting current through a perm-selective membrane has been actively researched not only for the fundamental advancement of electrokinetics but also for energy/environmental applications such as electrodialysis, fuel cells, etc. In particular, various strategies were reported for the enhancement of overlimiting current because these applications demand efficient mass transport through the membrane. In this work, we presented in operando visualization and rigorous numerical study for the overlimiting current density enhancement using a pulsed electric field which is one of the most cost-effective parameters to be externally controlled. We clearly demonstrated that the current density had a peak value as a function of the pulse frequency and would suggest its correlation to a concentration profile and diffusion relaxation time ([small tau, Greek, tilde]diff). As the pulse frequency was chosen which is similar to ([small tau, Greek, tilde]diff)-1, the concentration profiles (i.e. established current paths) were maintained even in off-state due to remnant current paths helping the fast ion transportation. The fundamental evidence presented in this work would provide a strategical design of a perm-selective membrane system for a higher mass transportation efficiency.