Recruitment and mortality of Rhizophora mangle L. seedlings in the Tropical Southwestern Atlantic mangrove.
K O O LimaM M P TognellaHumber Agrelli de AndradeS R CunhaS S PascoaliniAgnaldo S MartinsR D GhisolfiPublished in: Brazilian journal of biology = Revista brasleira de biologia (2024)
Studies in the long-term recruitment and mortality of mangrove seedlings can help to understand mangrove demography and its relationship with climatic variables, environmental restoration and advances in the ecology of this ecosystem. A seven-year population dynamics study of seedling recruitment and mortality in cohorts of Rhizophora mangle L. was carried out to identify expansion processes and patterns of survival in the understory of mangrove forests on the Atlantic coast of Brazil. The present study aimed to evaluate the relationship between recruitment and mortality R. mangle seedlings at the population level, salinity, and climatic variables (precipitation, temperature and humidity). On an annual scale, seedling recruitment was positively correlated with mean temperature. Seedling density was negatively correlated with the number of recruits and positively with the number of deaths. The number of recruits was associated with dead seedlings, temperature and precipitation considering a population scale, without grouping the data. The seedling density in the stands increased with the number of dead seedlings. Our findings described the relationship between climate variability (durability and magnitude of the dry/rainy season) and the long-term population dynamics of R. mangle seedlings in a poorly studied region and from what moment, on a monthly and annual time scale, did this relationship become significant and changes occur. The findings of this study provide information on the population dynamics of the species that will help in understanding mangrove demography. These results have important implications for projections about the recruitment and survival of the species thinking about to long-term climate change that will modify current weather patterns and mangrove conservation efforts.