Core Modulation of 70-Nuclei Core-Shell Silver Nanoclusters.
Jia-Wei LiuZhi WangYu-Ming ChaiMohamedally KurmooQuan-Qin ZhaoXing-Po WangChen-Ho TungDi SunPublished in: Angewandte Chemie (International ed. in English) (2019)
The reaction of {(HNEt3 )2 [Ag10 (tBuC6 H4 S)12 ]}n , Ag2 O, Na2 MoO4 , and m-methoxybenzoic acid (Hmbc) in CH3 OH/CH2 Cl2 led to yellow crystals of [Ag4 S4 (MoO4 )5 @Ag66 ] (SD/Ag70b; SD=SunDi) only, while in the presence of DMF, additional dark-red crystals of [Ag10 @ (MoO4 )7 @Ag60 ] (SD/Ag70a) were obtained. SD/Ag70b consists of five MoO4 2- ions wrapped by a shell of 66 Ag atoms, while SD/Ag70a contains a rare Ag10 kernel consisting of five tetrahedra sharing faces and edges, surrounded by seven MoO4 2- ions enclosed in a shell of 60 Ag atoms. The formation of the Ag10 kernel originates from a reduction reaction during the self-assembly process that involves DMF. This work provides the structural information of a unique Ag10 kernel (five fused Ag4 tetrahedra) and paves an avenue to trap elusive silver species with hierarchical multi-shell silver nanocluster assemblies with the help of anion templates.