Machine Learning-Guided Prediction of Central Anterior Chamber Depth Using Slit Lamp Images from a Portable Smartphone Device.
David ChenYvonne HoYuki SasaJieying LeeChing Chiuan YenClement TanPublished in: Biosensors (2021)
There is currently no objective portable screening modality for narrow angles in the community. In this prospective, single-centre image validation study, we used machine learning on slit lamp images taken with a portable smartphone device (MIDAS) to predict the central anterior chamber depth (ACD) of phakic patients with undilated pupils. Patients 60 years or older with no history of laser or intraocular surgery were recruited. Slit lamp images were taken with MIDAS, followed by anterior segment optical coherence tomography (ASOCT; Casia SS-1000, Tomey, Nagoya, Japan). After manual annotation of the anatomical landmarks of the slit lamp photos, machine learning was applied after image processing and feature extraction to predict the ACD. These values were then compared with those acquired from the ASOCT. Sixty-six eyes (right = 39, 59.1%) were included for analysis. The predicted ACD values formed a strong positive correlation with the measured ACD values from ASOCT (R2 = 0.91 for training data and R2 = 0.73 for test data). This study suggests the possibility of estimating central ACD using slit lamp images taken from portable devices.
Keyphrases
- optical coherence tomography
- machine learning
- deep learning
- loop mediated isothermal amplification
- big data
- artificial intelligence
- convolutional neural network
- diabetic retinopathy
- end stage renal disease
- sensitive detection
- low cost
- chronic kidney disease
- ejection fraction
- newly diagnosed
- optic nerve
- electronic health record
- physical activity
- healthcare
- minimally invasive
- peritoneal dialysis
- prognostic factors
- mental health
- mass spectrometry
- data analysis
- coronary artery bypass
- rna seq
- community dwelling
- acute coronary syndrome
- coronary artery disease
- high speed
- patient reported
- cataract surgery