Login / Signup

Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways.

Enkai LiNathan HornKolapo Matthew Ajuwon
Published in: Archives of toxicology (2021)
Mycotoxin contamination in foods is a major risk factor for human and animal health due to its prevalence in cereals and their by-products. Deoxynivalenol (DON), mainly produced by Fusarium genera, is the most common mycotoxin detected in cereal products. Deoxynivalenol disrupts intestinal barrier function and decreases protein levels of tight junction proteins (TJP). However, the overall mechanism by which DON regulates specific TJP turnover and epithelial cell integrity remains unclear. Herein, we show that DON (2 μM) decreases the protein stability and accelerates the degradation of TJP in the lysosome. Interestingly, pretreatment of cells with dynasore (a dynamin-dependent endocytosis inhibitor) protected against DON-induced degradation of claudin-3 and 4. Immunofluorescence analysis also shows that the decreased membrane presence of claudin-4 and ZO-1 induced by DON is reversible with dynamin inhibition, whereas the pretreatment with cytochalasin D (an actin-dependent endocytosis inhibitor) reverses the degradation of claudin-1 and 4 induced by DON. We also show that the endocytosis and degradation of claudin-1 is regulated by p38 mitogen-activated protein kinase (MAPK), whereas the endocytosis of claudin-4 and ZO-1 is mediated by c-Jun-N-terminal kinase (JNK). Resveratrol, with JNK inhibitory activity, also prevents the endocytosis and degradation of claudin-4 and ZO-1 and protects against DON-induced decrease in transepithelial electrical resistance (TEER) and increase in FITC-dextran permeability. Collectively, this study, for the first time, shows that DON accelerates the endocytosis and degradation of TJP and this is regulated by the activation of p38 MAPK and JNK signaling pathways. Therefore, natural bioactive compounds with p38 MAPK and JNK inhibitory activities may be effective in preventing the DON-induced TJP disruption and preserve gut barrier function in vivo.
Keyphrases