Synthesis of Benzofuran-Embedded Selena- and Telluraporphyrins.
Avisikta SinhaMangalampalli RavikanthPublished in: The Journal of organic chemistry (2022)
The benzofuran-embedded selena- and telluraporphyrins are resulted by replacing the pyrrole ring that is across the selenophene/tellurophene ring in meso -tetraaryl 21-selenaporphyrin and 21-telluraporphyrin respectively by a benzofuran unit. Three examples of benzofuran-embedded selenaporphyrins and one example of benzofuran-embedded telluraporphyrin were synthesized by adopting a simple 3 + 2 synthetic protocol involving the condensation of benzofuran based tripyrrane with appropriate 2,5- bis (hydroxymethylaryl) selenophene/telluorophene to afford pure benzofuran-embedded selenaporphyrins and telluraporphyrin in 3-6% yields. The macrocycles were thoroughly characterized and studied by various spectroscopic and computational techniques. The spectral and computational studies certified their nonaromatic nature unlike aromatic meso -tetraaryl 21-selena/21-telluraporphyrins, which proves that replacement of pyrrole with a benzofuran ring results in complete alteration of electronic properties. The DFT studies revealed that the benzofuran moiety hinders π-electron delocalization in the macrocycle due to its inflexibility, and the macrocycles adopt highly deformed saddle-shaped structures. The absorption spectra of benzofuran-embedded selena- and telluraporphyrins showed one strong band at ∼350-380 nm and one broad band at ∼650-695 nm that extended up to ∼900 nm. However, the protonated derivatives of macrocycles absorb strongly in the NIR region with a band trailing up to 1200 nm. The electrochemical studies revealed that the macrocycles are electron deficient, and theoretical studies resembled the experimental observations.