Login / Signup

Propensity score analysis methods with balancing constraints: A Monte Carlo study.

Yan LiLiang Li
Published in: Statistical methods in medical research (2021)
The inverse probability weighting is an important propensity score weighting method to estimate the average treatment effect. Recent literature shows that it can be easily combined with covariate balancing constraints to reduce the detrimental effects of excessively large weights and improve balance. Other methods are available to derive weights that balance covariate distributions between the treatment groups without the involvement of propensity scores. We conducted comprehensive Monte Carlo experiments to study whether the use of covariate balancing constraints circumvent the need for correct propensity score model specification, and whether the use of a propensity score model further improves the estimation performance among methods that use similar covariate balancing constraints. We compared simple inverse probability weighting, two propensity score weighting methods with balancing constraints (covariate balancing propensity score, covariate balancing scoring rule), and two weighting methods with balancing constraints but without using the propensity scores (entropy balancing and kernel balancing). We observed that correct specification of the propensity score model remains important even when the constraints effectively balance the covariates. We also observed evidence suggesting that, with similar covariate balance constraints, the use of a propensity score model improves the estimation performance when the dimension of covariates is large. These findings suggest that it is important to develop flexible data-driven propensity score models that satisfy covariate balancing conditions.
Keyphrases
  • combination therapy
  • monte carlo
  • systematic review
  • smoking cessation
  • cell fate