Rapid detection of rare events from in situ X-ray diffraction data using machine learning.
Weijian ZhengJun-Sang ParkPeter KeneseiAhsan AliZhengchun LiuIan T FosterNicholas SchwarzRajkumar KettimuthuAntonino MiceliHemant SharmaPublished in: Journal of applied crystallography (2024)
High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials in their bulk form. These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots of the evolving microstructure and attributes over time. However, the extreme data volumes and the high costs of traditional data acquisition and reduction approaches pose a barrier to quickly extracting actionable insights and improving the temporal resolution of these snapshots. This article presents a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data. The technique is computationally faster by at least 50 times than the traditional approaches and works for data sets that are up to nine times sparser than a full data set. This new technique leverages self-supervised image representation learning and clustering to transform massive data sets into compact, semantic-rich representations of visually salient characteristics ( e.g. peak shapes). These characteristics can rapidly indicate anomalous events, such as changes in diffraction peak shapes. It is anticipated that this technique will provide just-in-time actionable information to drive smarter experiments that effectively deploy multi-modal X-ray diffraction methods spanning many decades of length scales.