Login / Signup

Photothermal synthesis of a CuO x &FeO y catalyst with a layered double hydroxide-derived pore-confined frame to achieve photothermal CO 2 hydrogenation to CO with a rate of 136 mmol min -1 g cat -1 .

Lizhu SongXinli YiShuxin OuyangJinhua Ye
Published in: Nanoscale advances (2022)
Solar-driven CO 2 conversion into the industrial chemical CO via the reverse water-gas reaction is an ideal technological approach to achieve the key step of carbon neutralization. The high reaction temperature is cost-free due to the photothermal conversion brought about by solar irradiation and is beneficial to the catalytic efficiency. However, the thermostability of adopted catalysts is a great challenge. Herein, we develop an in situ photothermal synthesis to obtain a CuO x &FeO y catalyst with a layered double hydroxide-derived pore-confined frame. The optimized sample delivers a CO generation rate of 136.3 mmol min -1 g cat -1 with the selectivity of ∼100% at a high reaction temperature of 1015 °C. The efficient catalytic activity can be attributed to the fact that the pore-confined frame substrate prevents the growth of CuO x and FeO y nanoparticles during the high-temperature reaction and the basic groups on the substrate promote the adsorption and activation of CO 2 .
Keyphrases