Login / Signup

Community connectivity and local heterogeneity explain animal species co-occurrences within pond communities.

Mariana IllarzeMatías ArimRodrigo Ramos-JilibertoAna Inés Borthagaray
Published in: The Journal of animal ecology (2024)
Metacommunity processes have the potential to determine most features of the community structure. However, species diversity has been the dominant focus of studies. Nestedness, modularity and checkerboard distribution of species occurrences are main components of biodiversity organisation. Within communities, these patterns emerge from the interaction between functional diversity, spatial heterogeneity and resource availability. Additionally, the connectivity determines the pool of species for community assembly and, eventually, the pattern of species co-occurrence within communities. Despite the recognised theoretical expectations, the change in occurrence patterns within communities along ecological gradients has seldom been considered. Here, we analyse the spatial occurrence of animal species along sampling units within 18 temporary ponds and its relationship with pond environments and geographic isolation. Isolated ponds presented a nested organisation of species with low spatial segregation-modularity and checkerboard-and the opposite was found for communities with high connectivity. A pattern putatively explained by high functional diversity in ponds with large connectivity and heterogeneity, which determines that species composition tracks changes in microhabitats. On the contrary, nestedness is promoted in dispersal-limited communities with low functional diversity, where microhabitat filters mainly affect richness without spatial replacement between functional groups. Vegetation biomass promotes nestedness, probably due to the observed increase in spatial variance in biomass with the mean biomass. Similarly, the richness of vegetation reduced the spatial segregation of animals within communities. This result may be due to the high plant diversity of the pond that is observed similarly along all sampling units, which promotes the spatial co-occurrence of species at this scale. In the study system, the spatial arrangement of species within communities is related to local drivers as heterogeneity and metacommunity processes by means of dispersal between communities. Patterns of species co-occurrence are interrelated with community biodiversity and species interactions, and consequently with most functional and structural properties of communities. These results indicate that understanding the interplay between metacommunity processes and co-occurrence patterns is probably more important than previously thought to understand biodiversity assembly and functioning.
Keyphrases
  • healthcare
  • genetic diversity
  • mental health
  • risk assessment
  • single cell
  • white matter
  • resting state
  • wastewater treatment
  • anaerobic digestion