Toward Frameworks with Multiple Aligned and Interactive Fe(CO)3 Rotators: Syntheses and Structures of Diiron Complexes Linked by Two trans-Diaxial α,ω-Diphosphine Ligands Ar2P(CH2)nPAr2.
Samuel R ZarconeGong M ChuAndreas EhnbomAshley CardenalTobias FiedlerNattamai BhuvaneshMichael B HallJohn A GladyszPublished in: Inorganic chemistry (2021)
Reactions of (η4-benzylideneacetone)Fe(CO)3 and the α,ω-diphosphines Ar2P(CH2)nPAr2 afford the trigonal bipyramidal diiron tetraphosphorus complexes trans,trans-(CO)3Fe[Ar2P(CH2)nPAr2]2Fe(CO)3 (n/Ar = 3/Ph 3, 4/Ph 4a, 4/p-tol 4b; 56-19%). Crystal structures establish essentially parallel P-Fe-P axes, iron-iron distances of 5.894(9)-5.782(1) Å (3) and 6.403(1)-6.466(1) Å (4a,b), and van der Waals radii of 4.45 Å for the Fe(CO)3 rotators, the planes of which are offset by 0.029-1.665 Å. Analogous reactions of Ph2P(CH2)6PPh2 yield the square pyramidal monoiron complex trans-(CO)3Fe[Ph2P(CH2)6PPh2] (6', 31%), a rare case where a diphosphine spans trans basal positions (∠P-Fe-P 147.4(2)°). Both 3 and 6' exhibit two CO 13C NMR signals at room temperature, indicating slow exchange on the NMR time scale, which in the former could entail Fe(CO)3/Fe(CO)3 gearing. Under analogous conditions, 4a,b exhibit one signal. Previously reported adducts of Fe(CO)3 and Ph2P(CH2)nPPh2 are surveyed (1:1, n = 1-5; 2:2, n = 5), and the IR νC≡O band patterns and energies of all complexes analyzed with the aid of DFT calculations. The diiron complexes are preferred thermodynamically. Attention is given to limiting types of Fe(CO)3/Fe(CO)3 interactions in the diiron complexes.