High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries.
Fulong ZhuHongfei BaoXuesong WuYanli TaoChao QinZhong-Min SuZhen-Hui KangPublished in: ACS applied materials & interfaces (2019)
Single-ionic conducting electrolytes are important for the improvement of lithium metal batteries with high energy density and safety. Herein, we propose a new strategy to anchor a large anionic group on the skeleton of metal-organic frameworks (MOFs) and achieve preeminent single-ionic conducting electrolytes. Utilizing a postsynthetic modification method, the trifluoromethanesulfonyl group is covalently coordinated to the amino groups of the UiO-66-NH2 framework. Such a single-ionic conducting solid-state electrolyte (SSE) has a high ionic conductivity (2.07 × 10-4 S cm-1 at 25 °C), a low activation energy of 0.31 eV, a wide electrochemical window up to 4.52 V, as well as a high Li+ transference number of 0.84. Simultaneously, it can effectively inhibit the formation of lithium dendrite. Solid-state batteries assembled with LiFePO4 as the cathode exhibit outstanding rate performance and cyclic stability, especially for low-temperature Li-metal batteries at 0 °C with trace amounts of propylene carbonate as wetting agents. More importantly, the corresponding all-solid-state batteries based on an MOF-based SSE also have nearly 100% Coulombic efficiency at different current densities.