Login / Signup

Synthesis, Structure, and Reactivity of a Terminal Magnesium Hydride Compound with a Carbatrane Motif, [TismPriBenz]MgH: A Multifunctional Catalyst for Hydrosilylation and Hydroboration.

Michael RauchSerge RuccoloGerard Parkin
Published in: Journal of the American Chemical Society (2017)
The tris[(1-isopropylbenzimidazol-2-yl)dimethylsilyl)]methyl ligand, [TismPriBenz], has been employed to form the magnesium carbatrane compound, [TismPriBenz]MgH, which possesses a terminal hydride ligand. Specifically, [TismPriBenz]MgH is obtained via the reaction of [TismPriBenz]MgMe with PhSiH3. The reactivity of [TismPriBenz]MgMe and [TismPriBenz]MgH allows access to a variety of other structurally characterized carbatrane derivatives, including [TismPriBenz]MgX [X = F, Cl, Br, I, SH, N(H)Ph, CH(Me)Ph, O2CMe, S2CMe]. In addition, [TismPriBenz]MgH is a catalyst for (i) hydrosilylation and hydroboration of styrene to afford the Markovnikov products, Ph(Me)C(H)SiH2Ph and Ph(Me)C(H)Bpin, and (ii) hydroboration of carbodiimides and pyridine to form N-boryl formamidines and N-boryl 1,4- and 1,2-dihydropyridines, respectively.
Keyphrases
  • room temperature
  • ionic liquid
  • drug delivery
  • cancer therapy