HP-β-CD Functionalized Fe3O4/CNPs-Based Theranostic Nanoplatform for pH/NIR Responsive Drug Release and MR/NIRFL Imaging-Guided Synergetic Chemo/Photothermal Therapy of Tumor.
Saijie SongYu ChongHan FuXinyu NingHe ShenZhijun ZhangPublished in: ACS applied materials & interfaces (2018)
The combination of chemotherapy and photothermal therapy has aroused great interest due to its better antitumor effect than either single therapy alone. Herein, we report on the development of hydroxypropyl-β-cyclodextrin functionalized Fe3O4/carbon nanoparticles (HFCNPs) for pH/near-infrared (NIR) responsive drug release, magnetic resonance/NIR fluorescence (MR/NIRFL) imaging-guided combined chemo/photothermal therapy. The high doxorubicin (DOX) loading capacity (61.2%) and controlled drug release by NIR irradiation and weak acid microenvironment render HFCNPs a good vector for DOX delivery and controlled release. Moreover, the MR/NIRFL dual-modal imaging was used to define the tumor location, size, and boundary and to track the tumor accumulation of HFCNPs and their biodistribution. The efficient accumulation and prolonged retention time of the nanoparticles in tumor are beneficial to tumor therapy. Taking advantage of the NIR laser-induced heating and hence promoted drug permeation, remarkable tumor inhibition was realized by synergetic chemo/photothermal therapy. In conclusion, the current work offers a promising approach to the development of smart and efficient multimodal cancer-targeted nanotheranostics.