Login / Signup

Recyclable Polycarbosilane from a Biomass-Derived Bifuran-Based Monomer.

Shunsuke BeppuYuya TachibanaKen-Ichi Kasuya
Published in: ACS macro letters (2023)
Two of the most fundamental principles for the development of next-generation polymers are production from renewable biomass and well-designed recyclability. Bifuran derivatives represent promising building blocks for functional polymers on account of their high rigidity, strong interchain interactions, and extended π-conjugation. In this study, a polycarbosilane containing a bifuran-based repeat unit was prepared via the hydrosilylation of dihydrosilylbifuran and 1,5-hexadiene. The crystallinity and thermal properties of the bifuran-containing polycarbosilane were superior to those of a corresponding polycarbosilane containing a single-furan-based repeat unit and comparable to those of the benzene-based analogue due to the rigidity and interchain interactions of the poly(bifurancarbosilane) unit. The bifuran moiety in the repeat unit causes a red-shift and strong UV absorption of the polycarbosilane compared to that containing the single-furan-based and benzene-based repeat units. The bifuran moiety also renders the resulting polycarbosilane strongly fluorescent, while the polycarbosilanes containing the benzene-based and single-furan-ring-based repeat units did not emit fluorescence. These desirable photoproperties result from the extension of the σ-π conjugation in the repeat unit. Furthermore, the chemical recyclability is a unique and attractive property of the bifuran-based polycarbosilane; upon treatment with trifluoroacetic acid, bifuran can be regenerated as the monomer, while trifluoroacetate silane can be up-cycled to the corresponding polysiloxane. Thus, the bifuran motif endows polycarbosilane with improved thermal, optical, and recycling properties.
Keyphrases
  • quantum dots
  • high speed
  • simultaneous determination
  • liquid chromatography