Synthesis, Characterization and Sorption Ability of Epoxy Resin-Based Sorbents with Amine Groups.
Beata PodkościelnaMonika WawrzkiewiczŁukasz KlapiszewskiPublished in: Polymers (2021)
Water pollution by toxic substances, such as azo dyes, is a serious environmental problem that needs to be addressed. This study presents the synthesis and characterization of new polymeric sorbents, based on the epoxy resin Epidian® 5 (Ep5), as a potential adsorbent for the removal of the toxic azo dye C.I. Acid Violet 1 (AV1). Triethylenetetramine (TETA) was applied as a cross-linking agent in the amounts of 1 g (6.67 wt %), 1.5 g (10 wt %), and 2 g (13.33 wt %). The use of a compound with amino groups allows for the simultaneous functionalization of the obtained material. The reaction was carried out in an environment of ethylene glycol, with the addition of a porophore solvent (toluene) and bis(2-ethylhexyl)sulfosuccinate sodium salt (S). The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed the existence of a strong band in the 828-826 cm-1 range corresponding to the second-order amine group, which indicates their incorporation into the epoxy structure. The glass transition and decomposition temperatures of the resins decreased with the increasing amounts of amine in the material. The thermogravimetry (TGA) analysis demonstrated that all products are thermally stable up to 340 °C. The surface morphology and microstructural properties of the obtained sorbents were determined using scanning electron microscopy (SEM) images and showed an irregular star shape, with dimensions ranging from 400 to 1000 µm. The adsorption capacities of Ep5-TETA1, Ep5-TETA1.5, Ep5-TETA2 and Ep5-TETA1.5 + S for AV1 evaluated during batch experiments were found to be 2.92, 3.76, 7.90 and 3.30 mg/g, respectively.