Solanum nigrum Toxicity and Its Neuroprotective Effect Against Retinal Ganglion Cell Death Through Modulation of Extracellular Matrix in a Glaucoma Rat Model.
Karan Singh YadavAmol Chhatrapati BisenSharmeen IshteyaqueIsha SharmaSmriti VermaSachin Nashik SanapShobhit VermaKaveri R WashimkarAkhilesh KumarVineeta TripathiRabi Sankar BhattaMadhav Nilakanth MugalePublished in: Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics (2024)
Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro , {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H 2 DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo , AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 μg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.
Keyphrases
- extracellular matrix
- cell death
- cell cycle arrest
- induced apoptosis
- reactive oxygen species
- oxidative stress
- optic nerve
- liquid chromatography tandem mass spectrometry
- high performance liquid chromatography
- simultaneous determination
- dna damage
- solid phase extraction
- cataract surgery
- signaling pathway
- mass spectrometry
- optical coherence tomography
- high throughput
- cell proliferation
- anti inflammatory
- ionic liquid
- brain injury
- diabetic retinopathy
- cell migration
- wound healing
- blood brain barrier
- subarachnoid hemorrhage