MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile.
Xin LiuLong ZhaoYuan WangJingjing ZhouDan WangYixin ZhangXianghui ZhangZhaojuan WangDongxu YangLingyun MouRui WangPublished in: ACS chemical neuroscience (2017)
Opioid peptides are neuromodulators that bind to opioid receptors and reduce pain sensitivity. Endomorphins are among the most active endogenous opioid peptides, and they have good affinity and selectivity toward the μ opioid receptor. However, their clinical usage is hindered by their inability to cross the blood-brain barrier and their poor in vivo activity after peripheral injection. In order to overcome these defects, we have designed and synthesized a series of novel endomorphin analogs with multiple site modifications. Radioligand binding, cAMP accumulation, and β-arrestin-2 recruitment assays were employed to determine the activity of synthesized endomorphin analogs toward opioid receptors. The blood-brain barrier permeability and antinociceptive effect of these analogs were determined in several rodent models of acute and persistent pain. In addition, the side effects of the analogs were examined. The radioligand binding assay and functional activity examination indicated that the MEL-N16 series of compounds were more active agonists against μ opioid receptor than were the parent peptides. Notably, the analogs displayed biased downstream signaling toward G-protein pathways over β-arrestin-2 recruitment. The analogs showed highly potent antinociceptive effects in the tested nociceptive models. In comparison with endomorphins, the synthesized analogs were better able to penetrate the blood-brain barrier and exerted their pain regulatory activity in the central nervous system after peripheral injection. These analogs also have lower tendency to cause side effects than morphine does at similar or equal antinociceptive doses. The MEL-N16 compounds have highly potent and efficacious analgesic effects in various pain models with a favorable side effect profile.