Login / Signup

An imbalance of excitation and inhibition in the multisensory cortex impairs the temporal acuity of audiovisual processing and perception.

Ashley L SchormansBrian L Allman
Published in: Cerebral cortex (New York, N.Y. : 1991) (2023)
The neural integration of closely timed auditory and visual stimuli can offer several behavioral advantages; however, an overly broad window of temporal integration-a phenomenon observed in various neurodevelopmental disorders-could have far-reaching perceptual consequences. Non-invasive studies in humans have suggested that the level of GABAergic inhibition in the multisensory cortex influences the temporal window over which auditory and visual stimuli are bound into a unified percept. Although this suggestion aligns with the theory that an imbalance of cortical excitation and inhibition alters multisensory processing, no prior studies have performed experimental manipulations to determine the causal effects of a reduction of GABAergic inhibition on audiovisual temporal perception. To that end, we used a combination of in vivo electrophysiology, neuropharmacology, and translational behavioral testing in rats to provide the first mechanistic evidence that a reduction of GABAergic inhibition in the audiovisual cortex is sufficient to disrupt unisensory and multisensory processing across the cortical layers, and ultimately impair the temporal acuity of audiovisual perception and its rapid adaptation to recent sensory experience. Looking forward, our findings provide support for using rat models to further investigate the neural mechanisms underlying the audiovisual perceptual alterations observed in neurodevelopmental disorders, such as autism, schizophrenia, and dyslexia.
Keyphrases
  • working memory
  • functional connectivity
  • autism spectrum disorder
  • bipolar disorder
  • case control