Login / Signup

Defective PtRuTe As Nanozyme with Selectively Enhanced Peroxidase-like Activity.

Changshuai ShangQingqing WangHao TanShiyu LuShuguang WangQinghua ZhangLin GuJing LiErkang WangShaojun Guo
Published in: JACS Au (2022)
Noble metal based nanozymes show great potential in replacing natural enzymes; however, their development is greatly restricted by their relatively low specificity and activity. Herein, we report the synthesis of a class of amorphous/crystalline PtRuTe nanomaterials with a Pt/Te-enriched core and a Ru-enriched shell as efficient peroxidase mimics with selectively enhanced peroxidase-like activity and suppressed oxidase-like activity. We demonstrate that amorphous domains play a critical role in tuning and optimizing the catalytic properties. The PtRuTe nanozyme with high-percentage defects exhibits superior catalytic activities and kinetics, and the suppressed oxidase-like activity could diminish the interference of O 2 in the glucose colorimetric assay. The high catalytic performance can be caused by amorphous phase induced electron redistribution and electronic interactions between different elements and the synergistic effect of multimetallic nanocrystals. The concurrent extraordinary peroxidase-like activity and suppressed oxidase-like activity guarantee the amorphous/crystalline PtRuTe nanozymes as promising alternatives of natural enzymes for biosensing and beyond.
Keyphrases