ABC and ABAB Block Copolymers by Electrochemically Controlled Ring-Opening Polymerization.
Zachary C HernStephanie M QuanRuxi DaiAmy LaiYihang WangChong LiuPaula L DiaconescuPublished in: Journal of the American Chemical Society (2021)
An electrochemically controlled synthesis of multiblock copolymers by alternating the redox states of (salfan)Zr(OtBu)2 (salfan = 1,1'-di(2-tert-butyl-6-N-methylmethylenephenoxy)ferrocene) is reported. Aided by electrochemistry with a glassy carbon working electrode, an in situ potential switch alters the catalyst's oxidation state and its subsequent monomer (l-lactide, β-butyrolactone, or cyclohexene oxide) selectivity in one pot. Various multiblock copolymers were prepared, including an ABAB tetrablock copolymer, poly(cyclohexene oxide-b-lactide-b-cyclohexene oxide-b-lactide), and an ABC triblock copolymer, poly(hydroxybutyrate-b-cyclohexene oxide-b-lactide). The polymers produced using this technique are similar to those produced via a chemical redox reagent method, displaying moderately narrow dispersities (1.1-1.5) and molecular weights ranging from 7 to 26 kDa.