Design, Synthesis, Insecticidal Activities and Molecular Docking of Sulfonamide Derivatives Containing Propargyloxy or Pyridine Groups.
Jian-Jun ZhuTao GuoZi-Wei ZhangHao QianPeng TianKe-Yin YuWen-Jun WuJi-Wen ZhangPublished in: Chemistry & biodiversity (2023)
The discovery of new highly active molecules from natural products is a common method to create new pesticides. Celangulin V targeting Mythimna separate (M. separate) midgut V-ATPase H subunit, has received considerable attention for its excellent insecticidal activity and unique mechanism of action. Therefore, combined with our preliminary work, thirty-seven sulfonamide derivatives bearing propargyloxy or pyridine groups were systematically synthesized to search for insecticidal candidate compounds with low cost and high efficiency on the H subunit of V-ATPase. Bioactive results showed that compounds A2-A4 and A6-A7 exhibited a better bioactivity with median effective concentration (LC 50 ) values (2.78, 3.11, 3.34, 3.54 and 2.48 mg/mL, respectively) against third-instar larvae of M. separate than Celangulin V (LC 50 =18.1 mg/mL). Additionally, molecular docking experiments indicated that these molecules may act on the H subunit of V-ATPase. Based on the above results, these compounds provide new ideas for the discovery of insecticides.