Login / Signup

Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces.

Chloe F DoironIgal BrenerAlexander Cerjan
Published in: Nature communications (2022)
Bound states in the continuum (BICs) have received significant attention for their ability to enhance light-matter interactions across a wide range of systems, including lasers, sensors, and frequency mixers. However, many applications require degenerate or nearly degenerate high-quality factor (Q) modes, such as spontaneous parametric down conversion, non-linear four-wave mixing, and intra-cavity difference frequency mixing for terahertz generation. Previously, degenerate pairs of bound states in the continuum (BICs) have been created by fine-tuning the structure to engineer the degeneracy, yielding BICs that respond unpredictably to structure imperfections and material variations. Instead, using a group theoretic approach, we present a design paradigm based on six-fold rotational symmetry (C 6 ) for creating degenerate pairs of symmetry-protected BICs, whose frequency splitting and Q-factors can be independently and predictably controlled, yielding a complete design phase space. Using a combination of resonator and lattice deformations in silicon metasurfaces, we experimentally demonstrate the ability to tune mode spacing from 2 nm to 110 nm while simultaneously controlling Q-factor.
Keyphrases
  • photodynamic therapy
  • working memory
  • air pollution