Identification and characterization of a UbK family kinase in Porphyromonas gingivalis that phosphorylates the RprY response regulator.
John D PerpichLan YakoumatosParker JohnsKendall S StockeZackary R FitzsimondsDaniel W WilkeyMichael L MerchantDaniel P MillerRichard J LamontPublished in: Molecular oral microbiology (2021)
Phosphorylation of proteins is a key component of bacterial signaling systems that can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW, and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two-component system response regulator (RR) RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine family kinase. The RR RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.
Keyphrases
- protein kinase
- transcription factor
- gene expression
- tyrosine kinase
- healthcare
- escherichia coli
- pseudomonas aeruginosa
- staphylococcus aureus
- microbial community
- genome wide
- genome wide identification
- dna methylation
- wastewater treatment
- cystic fibrosis
- african american
- amino acid
- antimicrobial resistance
- sewage sludge
- heavy metals
- heat shock