Login / Signup

Boron Nitride Nanotube Nucleation via Network Fusion during Catalytic Chemical Vapor Deposition.

Ben McLeanGrant B WebberAlister J Page
Published in: Journal of the American Chemical Society (2019)
Despite boron nitride nanotubes (BNNTs) first being synthesized in the 1990s, their nucleation mechanism remains unknown. Here we report nonequilibrium molecular dynamics simulations showing how BNNT cap structures form during Ni-catalyzed chemical vapor deposition (CVD) of ammonia borane. BN hexagonal ring networks are produced following the catalytic evolution of H2 from the CVD feedstock, the formation and polymerization of B-N chain structures, and the repeated cleavage of homoelemental B-B/N-N bonds by the catalyst surface. Defect-free BNNT cap structures then form perpendicular to the catalyst surface via direct fusion of adjacent BN networks. This BNNT network fusion mechanism is a marked deviation from the established mechanism for carbon nanotube nucleation during CVD and potentially explains why CVD-synthesized BNNTs are frequently observed having sharper tips and wider diameters compared to CVD-synthesized carbon nanotubes.
Keyphrases