Effects of complexity and seasonality on backward bifurcation in vector-host models.
Shakir BilalEdwin MichaelPublished in: Royal Society open science (2018)
We study implications of complexity and seasonality in vector-host epidemiological models exhibiting backward bifurcation. Vector-host diseases represent complex infection systems that can vary in the transmission processes and population stages involved in disease progression. Seasonal fluctuations in external forcing factors can also interact in a complex way with internal host factors to govern the transmission dynamics. In backward bifurcation, the insufficiency of R0 < 1 for predicting the stability of the disease-free equilibrium (DFE) state arises due to existence of bistability (coexisting DFE and endemic equilibria) for a range of R0 values below one. Here we report that this region of bistability decreases with increasing complexity of vector-borne disease transmission as well as with increasing seasonality strength. The decreases in the bistability region are accompanied by a reduced force of infection acting on primary hosts. As a consequence, we show counterintuitively that a more complex vector-borne disease may be easier to control in settings of high seasonality.
Keyphrases