Login / Signup

Differentiating a Least-Stable Single Nucleotide Mismatch in DNA Via Metal Ion-Mediated Base Pairing and Using Thioflavin T as an Extrinsic Fluorophore.

Srikrishna PramanikLaxmikanta KhamariSaptarshi Mukherjee
Published in: The journal of physical chemistry letters (2021)
Monitoring the DNA dynamics in solution has great potential to develop new nucleic acid-based sensors and devices. With spectroscopic approaches, both at the ensemble average and single-molecule resolution, this study is directed to differentiate a single nucleotide mismatch (SNM) via a metal ion-stabilized mismatched base-pairing (C-Ag+-C/C-Cu2+-T) (C = cytosine, T = thymine) and site-selective extrinsic fluorophore, specifically, Thioflavin T (ThT). This is the first approach of its kind where dynamic quantities like molecular diffusion coefficients and diffusion times have been utilized to distinguish the least-stable SNM (CC & CT) formed by the most discriminating nucleobase, specifically, cytosine in a 20-mer duplex DNA. Additionally, this work also quantifies metal ions (Ag+ and Cu2+) at lower concentrations using fluorescence correlation spectroscopy. Our results can provide greater molecular-level insights into the mismatch-dependent metal-DNA interactions and also illuminate ThT as a new fluorophore to monitor the dynamics involved in DNA-metal composites.
Keyphrases