Interphase Modulated Early-Stage Zn Electrodeposition Mechanism.
Jin ZhaoZhizhen LvShijie WangZhihui ChenZeyi MengGuoxin LiCongshan GuoTingting LiuJingshu HuiPublished in: Small methods (2023)
Zn electrodeposition mechanism is a cornerstone of dendritic issue exploration in Zn-ion battery. Investigation of the inherent early-stage Zn plating kinetics and its dependence on the reactivity of anode-electrolyte interphase is crucial. Herein, the kinetic evolution of Zn plating on three characteristic substrates is quantified: fresh Zn, commercial Zn foil, and Zn foil with spontaneously generated solid-electrolyte interphase (SEI). Using scanning electrochemical microscopy analysis, the original interphase regulation of Zn deposit orientation and the competitive reaction between Zn deposition and SEI passivation are studied in situ. Furthermore, the SEI layer can suppress the dendrite growth at initial state by guiding the horizontal alignment of Zn flakes and promote Zn plating process. This approach provided a feasible consideration into interphase engineering of various metal anodes.