Login / Signup

Photoreaction Dynamics of a Full-Length Protein YtvA and Intermolecular Interaction with RsbRA.

Seokwoo ChoiYusuke NakasoneKlaas J HellingwerfMasahide Terazima
Published in: Biochemistry (2020)
YtvA from Bacillus subtilis is a sensor protein that responds to blue light stress and regulates the activity of transcription factor σB. It is composed of the N-terminal LOV (light-oxygen-voltage) domain, the C-terminal STAS (sulfate transporter and anti-sigma factor antagonist) domain, and a linker region connecting them. In this study, the photoreaction and kinetics of full-length YtvA and the intermolecular interaction with a downstream protein, RsbRA, were revealed by the transient grating method. Although N-YLOV-linker, which is composed of the LOV domain of YtvA with helices A'α and Jα, exhibits a diffusion change due to the rotational motion of the helices, the YtvA dimer does not show the diffusion change. This result suggests that the STAS domain inhibits the rotational movement of helices A'α and Jα. We found that the YtvA dimer formed a heterotetramer with the RsbRA dimer probably via the interaction between the STAS domains, and we showed the diffusion change upon blue light illumination with a time constant faster than 70 μs. This result suggests a conformational change of the STAS domains; i.e., the interface between the STAS domains of the proteins changes to enhance the friction with water by the rotation structural change of helices A'α and Jα of YtvA.
Keyphrases
  • transcription factor
  • bacillus subtilis
  • protein protein
  • amino acid
  • binding protein
  • molecular dynamics simulations
  • mass spectrometry
  • heat stress
  • high resolution
  • energy transfer