Utility of citizen science data: A case study in land-based shark fishing.
Kesley J GibsonMatthew K StreichTara S ToppingGregory W StunzPublished in: PloS one (2019)
Involving citizen scientists in research has become increasingly popular in natural resource management and allows for an increased research effort at low cost, distribution of scientific information to relevant audiences, and meaningful public engagement. Scientists engaging fishing tournament participants as citizen scientists represent ideal scenarios for testing citizen science initiatives. For example, the Texas Shark Rodeo has begun shifting to conservation-oriented catch-and-release practices, which provides a unique opportunity to collect data on a large scale for extended periods of time, particularly through tagging large numbers of sharks for very little cost compared to a directed scientific study. However, critics are somewhat skeptical of citizen science due to the potential for lack of rigor in data collection and validation. A major management concern for shark fisheries is the ability of anglers to identify species. We tested some of the assumptions and value of citizen-collected data by cross-verifying species identification. Specifically, the purpose of this study was to evaluate the accuracy of shark species identifications made by anglers fishing in the Texas Shark Rodeo using photographs that were submitted as a requirement for tournament participation. Using a confusion matrix, we determined that anglers correctly identified 97.2% of all shark catches submitted during the Texas Shark Rodeo from 2014-2018; however, smaller sharks and certain species, including blacknose and spinner sharks, were more difficult to identify than others. Most commonly confused with blacktip sharks, spinner sharks were most commonly identified incorrectly (76.1% true positive rate [TPR]) followed by blacknose (86.8% TPR), finetooth (88.0% TPR), and Atlantic sharpnose sharks (93.8% TPR). This study demonstrated that citizen scientists have the ability to identify sharks with relatively low error. This is important for science and management, as these long-term datasets with relatively wide geographic scope could potentially be incorporated into future assessments of sharks in the Gulf of Mexico.