Enhancing the Long-Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System.
Kai SunZhaoyang DingJicheng ZhangHaobin ChenYuling QinShihan XuChangfeng WuJiangbo YuDaniel T ChiuPublished in: Advanced healthcare materials (2020)
Impaired glucose metabolism in diabetes causes severe acute and long-term complications, making real-time detection of blood glucose indispensable for diabetic patients. Existing continuous glucose monitoring systems are unsuitable for long-term clinical glycemic management due to poor long-term stability. Polymer dot (Pdot) glucose transducers are implantable optical nanosensors that exhibit excellent brightness, sensitivity, selectivity, and biocompatibility. Here, it is shown that hydrogen peroxide-a product of glucose oxidation in Pdot glucose sensors-degrades sensor performance via photobleaching, reduces glucose oxidase activity, and generates cytotoxicity. By adding catalase to a glucose oxidase-based Pdot sensor to create an enzymatic cascade, the hydrogen peroxide product of glucose oxidation is rapidly decomposed by catalase, preventing its accumulation and improving the sensor's photostability, enzymatic activity, and biocompatibility. Thus, a next-generation Pdot glucose transducer with a multienzyme reaction system (Pdot-GOx/CAT) that provides excellent sensing characteristics as well as greater detection system stability is presented. Pdot glucose transducers that incorporate this enzymatic cascade to eliminate hydrogen peroxide will possess greater long-term stability for improved continuous glucose monitoring in diabetic patients.