Login / Signup

Homogeneous Lateral Lithium Intercalation into Transition Metal Dichalcogenides via Ion Backgating.

Jia-Yi JiTing BaoHeng WangYong XuDing ZhangQi-Kun Xue
Published in: Nano letters (2022)
Lithium intercalation has become a versatile tool for realizing emergent quantum phenomena in two-dimensional (2D) materials. However, the insertion of lithium ions may be accompanied by the creation of wrinkles and cracks, which prevents the material from manifesting its intrinsic properties under substantial charge injection. By using the recently developed ion backgating technique, we successfully realize lateral intercalation in 1T-TiSe 2 and 2H-NbSe 2 , which shows substantially improved sample homogeneity. The homogeneity at high lithium doping is not only demonstrated via low-temperature transport measurements but also directly visualized by topographical imaging through in situ atomic force microscopy (AFM). The application of lateral intercalation to a broad spectrum of 2D materials can greatly facilitate the search for exotic quantum phenomena.
Keyphrases
  • atomic force microscopy
  • transition metal
  • solid state
  • minimally invasive
  • molecular dynamics
  • resting state
  • single molecule
  • functional connectivity
  • mass spectrometry