Trueness of the Inner Surface of Monolithic Crowns Fabricated by Milling of a Fully Sintered (Y, Nb)-TZP Block in Chairside CAD-CAM System for Single-visit Dentistry.
Jun-Ho ChoHyung-In YoonJung-Suk HanDae-Joon KimPublished in: Materials (Basel, Switzerland) (2019)
A single-visit zirconia restoration can be easily achieved if direct milling of a fully sintered zirconia block can be performed without much effort. However, no studies have yet been reported regarding the evaluation of the trueness of crown fabricated from chairside-milling of a fully sintered zirconia block in the chairside computer-aided design and computer-aided manufacturing (CAD-CAM) system for single-visit dentistry. This in vitro study aimed to evaluate the trueness of crowns fabricated by milling a fully sintered zirconia block in the chairside CAD-CAM system and investigate the clinical implications for single-visit chairside restoration. Crowns were fabricated either by chairside-milling a fully sintered block of niobium oxide containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) without the sintering process (n = 12) in a chairside single-visit dentistry system (Chairside group) or by laboratory-milling a partially sintered 3 mol% block of yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) followed by the sintering process (n = 12) in a conventional laboratory system (Labside group). Crown fabrication time, milling tool diameter and the trueness of each crown were evaluated. All trueness values of both groups were within the clinically acceptable range, although a significant difference between the Chairside (43.0 ± 3.67 μm) and Labside groups (37.4 ± 2.41 μm) was observed (P < 0.05). Mean fabrication time was 0.52 h and 1.42 h for Chairside and Labside groups, respectively. A decrease in the tool diameter was observed for the Chairside group.
Keyphrases