Login / Signup

In Situ Metal-Assisted Ligand Modification Induces Mn4 Cluster-to-Cluster Transformation: A Crystallography, Mass Spectrometry, and DFT Study.

Yu-Yi ZhangDe-Shan ZhangTian LiMohamedally KurmooMing-Hua Zeng
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
Dehydration of (S,S)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol (H4 L) to (Z)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethenol) (H3 L') was found to be metal-assisted, occurs under solvothermal conditions (H2 O/CH3 OH), and leads to [MnII 4 (H3 L)4 Cl2 ]Cl2 ⋅5 H2 O⋅5 CH3 OH (Mn4 L4 ) and [MnII 4 (H2 L')6 (μ3 -OH)]Cl⋅4 CH3 OH⋅H2 O (Mn4 L'6 ), respectively. Their structures were determined by single-crystal XRD. Extensive ESI-MS studies on solutions and solids of the reaction led to the proposal consisting of an initial stepwise assembly of Mn4 L4 from the reactants via [MnL] and [Mn2 L2 ] below 80 °C, and then disassembly to [MnL] and [MnL2 ] followed by ligand modification before reassembly to Mn4 L'6 via [MnL'], [MnL'2 ], and [Mn2 L'3 ] with increasing solvothermal temperature up to 140 °C. Identification of intermediates [Mn4 Lx L'6-x ] (x=5, 4, 3, 2, 1) in the process further suggested an assembly/disassembly/in situ reaction/reassembly transformation mechanism. These results not only reveal that multiple phase transformations are possible even though they were not realized in the crystalline state, but also help to better understand the complex transformation process between coordination clusters during "black-box" reactions.
Keyphrases