Probabilistic U-Net model observer for the DDC method in CT scan protocol optimization.
David StockerChristian SommerSarah GuengJason StäubleIsmail ÖzdenJennifer GriessingerMathias S WeylandGerd LuttersStephan ScheideggerPublished in: Physics in medicine and biology (2024)
Optimizing complex imaging procedures within Computed Tomography, considering both dose and image quality, presents significant challenges amidst rapid technological advancements and the adoption of machine learning (ML) methods. A crucial metric in this context is the Difference-Detailed Curve, which relies on human observer studies. However, these studies are labor-intensive and prone to both inter- and intra-observer variability. To tackle these issues, a ML-based model observer utilizing the U-Net architecture and a Bayesian methodology is proposed. In order to train a model observer unaffected by the spatial arrangement of low-contrast objects, the image preprocessing incorporates a Gaussian Process-based noise model. Additionally, gradient-weighted class activation mapping is utilized to gain insights into the model observer's decision-making process. By training on data from a diverse group of observers, well-calibrated probabilistic predictions that quantify observer variability are achieved. Leveraging the principles of Beta regression, the Bayesian methodology is used to derive a model observer performance metric, effectively gauging the model observer's strength in terms of an 'effective number of observers'. Ultimately, this framework enables to predict the DDC distribution by applying thresholds to the inferred probabilities (Part of this work has been presented at: Stocker D, Sommer C, Gueng S, Stäuble J, Özden I, Griessinger J, Weyland M S, Lutters G, Scheidegger S (2023). Probabilistic U-Net Model Observer for the DDC Method in CT Scan Protocol Optimization. The 56th SSRMP Annual Meeting 2023, November 30. - December 1., 2023, Luzern, Switzerland).