Chain Length Dependence of Electron Transport in an n-Type Conjugated Polymer with a Rigid-Rod Chain Topology.
Duyen K TranSarah M WestJiajie GuoShin-Ya Emerson ChenDavid S GingerSamson A JenekhePublished in: Journal of the American Chemical Society (2024)
Most currently known n-type conjugated polymers have a semiflexible chain topology, and their charge carrier mobilities are known to peak at modest chain lengths of below 40-60 repeat units. Herein, we show that the field-effect electron mobility of a model n-type conjugated polymer that has a rigid-rod chain topology grows continuously without saturation, even at a chain length exceeding 250 repeat units. We found the mechanism underlying the novel chain length-dependent electron transport to originate from the reduced structural disorder and energetic disorder with the increasing degree of polymerization inherent to the rigid-rod chain topology. Furthermore, we demonstrate a unique chain length-dependent decay of threshold voltage, which is rationalized by decreased trap densities and trap depths with respect to the degree of polymerization. Our findings provide new insights into the role of polymer chain topology in electron transport and demonstrate the promise of rigid-rod chain architectures for the design of future high-mobility conjugated polymers.
Keyphrases