Login / Signup

Biocompatible Co-P Metallic Glasses with Superior Degradation Tolerance in Physiological Environments.

Mayur PoleKun ManChaitanya MahajanShristy JhaYong YangSundeep Mukherjee
Published in: ACS applied bio materials (2023)
Metallic glasses represent a class of metallic alloys with a fully amorphous structure and attractive properties, making them promising in bioimplant applications. Here, the degradation tolerance of biocompatible cobalt-phosphorus (Co-P) metallic glasses was studied in a simulated physiological environment. The metallic glasses were synthesized in the form of coatings through a facile electrodeposition approach. This method utilizes their outstanding surface characteristics and bypasses the size limitations usually associated with their bulk counterparts. The Co-P alloys showed exceptional tribological response with ∼14% lower coefficient of friction and 2 orders of magnitude lesser wear rate compared to SS316 stainless steel. In addition, the Co-P alloys showed a 3 times higher hardness and 4 times higher hardness/modulus ratio compared to SS316, indicating better elastic recovery under dynamic shear stresses that are common in load-bearing bioimplants. The Co-P metallic glasses exhibited excellent hemocompatibility and cytocompatibility in terms of lower platelet adhesion, spreading, and aggregation, a hemolysis ratio lower than 1%, and enhanced surface wettability, suggesting a superlative performance in bioimplant applications.
Keyphrases
  • ionic liquid
  • reduced graphene oxide
  • magnetic resonance
  • cystic fibrosis
  • metal organic framework
  • escherichia coli
  • heavy metals
  • staphylococcus aureus
  • drug delivery
  • pseudomonas aeruginosa
  • highly efficient