Login / Signup

Improved Melatonin Delivery by a Size-Controlled Polydopamine Nanoformulation Attenuates Preclinical Diabetic Retinopathy.

Mohammed Nadim SardoiwalaShakti NagpalBabita BhattSubhasree Roy ChoudhurySurajit Karmakar
Published in: Molecular pharmaceutics (2023)
Oxidative stress, reactive oxygen species generation, and overexpression of VEGF are signatory events in diabetic retinopathy. The downregulation of VEGF and anti-inflammatory action pave the way for diabetic retinopathy (DR) therapy. In that, lower absorption kinetics of melatonin limits its immense therapeutic potential. Hence, we have demonstrated a reverse microemulsion method to synthesize melatonin-loaded polydopamine nanoparticles to replenish both at a single platform with an improved melatonin delivery profile. The study has evaluated in vitro and in vivo protection efficiency of biocompatible melatonin-loaded polydopamine nanoparticles (MPDANPs). The protection mechanism was explained by downregulation of VEGF, CASPASE3, and PKCδ against high-glucose/streptozotocin (STZ)-induced insults, in vitro and in vivo . The anti-inflammatory and antiangiogenic effect and potential of MPDANPs to enhance melatonin in vivo stability with prolonged circulation time have proved MPDANPs as a potential therapeutic candidate in DR management. The DR therapeutic potential of MPDANPs has been arbitrated by improving the bioavailability of melatonin and inhibition of VEGF-PKCδ crosstalk in vivo .
Keyphrases