Login / Signup

A Multistate Thermoresponsive Smart Window Based on a Multifunctional Luminescent Solar Concentrator.

Yiqing ChenFeiyue GeYueling LaiLianju WangXianglong ZhaoRuilin WangShou PengXue-Jun WuYufeng Zhou
Published in: ACS applied materials & interfaces (2024)
Conventional luminescent solar concentrators (LSCs) usually only have the ability to absorb solar energy and convert it to electricity but are not able to regulate the transmitted light. Herein, a multistate thermoresponsive smart window (SW) based on LSC has been fabricated, in which the stimuli-responsive host layer consists of polydimethylsiloxane (PDMS) and ethylene glycol solution (EGS) microdroplets stacking with LSC layer-based on near-infrared (NIR) CuInSe 2- x S x /ZnS core/shell quantum dots (QDs) and PDMS matrix. As-synthesized CISSe/ZnS QDs with broad NIR absorption in LSC exhibit controllable emission spectra over 833-1088 nm and high photoluminescence (PL) quantum yield from 45 to 83%. Coupling with Si solar cells as a reference, optimized LSC-SW devices with dimensions of 5 × 5 × 0.9 cm 3 exhibit higher power conversion efficiency (PCE) of 1.19-1.36% with increased temperature from 0 to 50 °C than those of sole LSC and SW devices. The corresponding visible light transmissions are regulated from 75.1 to 48.1% accordingly. The improvement of PCEs in an opaque state is mainly due to enhanced absorption of QDs originating from rescattered photons from the EGS/PDMS layer, leading to more emitted photons reaching photovoltaics. This work is expected to bring up new opportunities for applications in greenhouses, building facades, and energy-efficient smart windows.
Keyphrases