Login / Signup

The estrous cycle modulates hippocampal spine dynamics, dendritic processing, and spatial coding.

Nora S WolcottWilliam T RedmanMarie KarpinskaEmily G JacobsMichael J Goard
Published in: bioRxiv : the preprint server for biology (2024)
Histological evidence suggests that the estrous cycle exerts a powerful effect on CA1 neurons in mammalian hippocampus. Decades have passed since this landmark observation, yet how the estrous cycle shapes dendritic spine dynamics and hippocampal spatial coding in vivo remains a mystery. Here, we used a custom hippocampal microperiscope and two-photon calcium imaging to track CA1 pyramidal neurons in female mice over multiple cycles. Estrous cycle stage had a potent effect on spine dynamics, with heightened density during periods of greater estradiol (proestrus). These morphological changes were accompanied by greater somatodendritic coupling and increased infiltration of back-propagating action potentials into the apical dendrite. Finally, tracking CA1 response properties during navigation revealed enhanced place field stability during proestrus, evident at the single-cell and population level. These results establish the estrous cycle as a driver of large-scale structural and functional plasticity in hippocampal circuits essential for learning and memory.
Keyphrases