Login / Signup

Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference.

Neal W MortonMargaret L SchlichtingAlison R Preston
Published in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Prior work has shown that the brain represents memories within a cognitive map that supports inference about connections between individual related events. Real-world adaptive behavior is also supported by recognizing common structure among numerous distinct contexts; for example, based on prior experience with restaurants, when visiting a new restaurant one can expect to first get a table, then order, eat, and finally pay the bill. We used a neurocomputational approach to examine how the brain extracts and uses abstract representations of common structure to support novel decisions. Participants learned image pairs (AB, BC) drawn from distinct triads (ABC) that shared the same internal structure and were then tested on their ability to infer indirect (AC) associations. We found that hippocampal and frontoparietal regions formed abstract representations that coded cross-triad relationships with a common geometric structure. Critically, such common representational geometries were formed despite the lack of explicit reinforcement to do so. Furthermore, we found that representations in parahippocampal cortex are hierarchical, reflecting both cross-triad relationships and distinctions between triads. We propose that representations with common geometric structure provide a vector space that codes inferred item relationships with a direction vector that is consistent across triads, thus supporting faster inference. Using computational modeling of response time data, we found evidence for dissociable vector-based retrieval and pattern-completion processes that contribute to successful inference. Moreover, we found evidence that these processes are mediated by distinct regions, with pattern completion supported by hippocampus and vector-based retrieval supported by parahippocampal cortex and lateral parietal cortex.
Keyphrases
  • working memory
  • single cell
  • deep learning
  • cerebral ischemia
  • white matter
  • brain injury
  • blood brain barrier
  • artificial intelligence
  • electronic health record