Ferroptosis is a newly identified cell death mechanism and potential biomarker for hepatocellular carcinoma (HCC) therapy; however, its clinical relevance and underlying mechanism remain unclear. In this study, transcriptome and methylome data from 374 HCC cases were investigated for 41 ferroptosis-related genes to identify ferroptosis activity-associated subtypes. These subtypes were further investigated for associations with clinical and pathological variables, gene mutation landscapes, deregulated pathways and tumour microenvironmental immunity. A gene expression signature and predictive model were developed and validated using an additional 232 HCC cases from another independent cohort. Two distinct ferroptosis phenotypes (Ferroptosis-H and Ferroptosis-L) were identified according to ferroptosis gene expression and methylation in the patients with HCC. Patients with the Ferroptosis-H had worse overall and disease-specific survival, and the molecular subtypes were significantly associated with different clinical characteristics, mRNA expression patterns, tumour mutation profiles and microenvironmental immune status. Furthermore, a 15-gene ferroptosis-related prognostic model (FPM) for HCC was developed and validated which demonstrated accurate risk stratification ability. A nomogram included the FPM risk score, ECOG PS and hepatitis B status was developed for eventual clinical translation. Our results suggest that HCC subtypes defined by ferroptosis gene expression and methylation may be used to stratify patients for clinical decision-making.
Keyphrases
- cell death
- gene expression
- cell cycle arrest
- dna methylation
- genome wide
- end stage renal disease
- stem cells
- decision making
- squamous cell carcinoma
- chronic kidney disease
- high resolution
- newly diagnosed
- peritoneal dialysis
- electronic health record
- deep learning
- prognostic factors
- mass spectrometry
- patient reported outcomes
- artificial intelligence
- transcription factor
- high speed