Bright Electroluminescent White-Light-Emitting Diodes Based on Carbon Dots with Tunable Correlated Color Temperature Enabled by Aggregation.
Zhibin WangNaizhong JiangMenglong LiuRuidan ZhangFeng HuangDaqin ChenPublished in: Small (Weinheim an der Bergstrasse, Germany) (2021)
Carbon dots (CDs) as one of the most promising carbon-based nanomaterials are inspiring extensive research in optoelectronic applications. White-light-emitting diodes (WLEDs) with tunable correlated color temperatures (CCTs) are crucial for applications in white lighting. However, the development of high-performance CDs-based electroluminescent WLEDs, especially those with adjustable CCTs, remains a challenge. Herein, white CDs-LEDs with CCTs from 2863 to 11 240 K are successfully demonstrated by utilizing aggregation-induced emission red-shifting and broadening of CDs. As a result, a series of warm white, pure white, and cold white CDs-LEDs are realized with adjustable emissions in sequence along the blackbody radiation curve. These CDs-LEDs reach maximum brightness and external quantum efficiency up to 1414-4917 cd m-2 and 0.08-0.87%, respectively, which is among the best performances of white CDs-LEDs. To the best of the authors' knowledge, this is the first time that CCT-tunable white electroluminescent CDs-LEDs are demonstrated through controlling the aggregation degrees of CDs.