Login / Signup

Benzo[a]pyrene Induces Autophagic and Pyroptotic Death Simultaneously in HL-7702 Human Normal Liver Cells.

Li YuanJunyi LiuHong DengChunxia Gao
Published in: Journal of agricultural and food chemistry (2017)
As a common polycyclic aromatic hydrocarbon compound, benzo[a]pyrene (BaP) is readily produced in processing of oil and fatty foods. It is not only a strong carcinogen but also a substance with strong immunotoxicity and reproduction toxicity. Autophagy and pyroptosis are two types of programmed cell death. Whether or not BaP damages body tissues via autophagy or pyroptosis remains unknown. The present study investigated the effects of BaP on autophagy and pyroptosis in HL-7702 cells. The results showed that BaP induced cell death in HL-7702 cells enhanced the intracellular levels of ROS and arrested the cell cycle at the S phase. Additionally, BaP resulted in cell death through autophagy and pyroptosis. Compared with the BaP group, the autophagy inhibitor 3-MA significantly (p < 0.01) inhibited the release of LDH by 70.53% ± 0.46 and NO by 50.36% ± 0.80, the increase of electrical conductivity by 12.08% ± 0.55, and the expressions of pyroptotic marker proteins (Caspase-1, Cox-2, IL-1β, IL-18). The pyroptosis inhibitor Ac-YVAD-CM also notably (p < 0.01) blocked BaP-induced autophagic cell death characterized by the increase of autophagic vacuoles and overexpression of Beclin-1 and LC3-II. In conclusion, BaP led to injury by inducing autophagy and pyroptosis simultaneously, the two of which coexisted and promoted each other in HL-7702 cells.
Keyphrases