DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates.
Haoran ZhengYan ZhouBingjie YanGaoang ZhouXinyi ChengSicheng LinMulin DuanJiang LiLihua WangChun-Hai FanJing ChenJianlei ShenPublished in: Journal of the American Chemical Society (2024)
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.