Login / Signup

Estimation of in vivo toxicity of MgO/ZnO core/shell nanoparticles synthesized by eco-friendly non-thermal plasma technology.

Raghad S MohammedKadhim A AadimKhalid A Ahmed
Published in: Applied nanoscience (2022)
MgO/ZnO core/shell nanoparticles were synthesized using the atmosphere plasma jets technique. The physical properties of the synthesized nanoparticles were investigated by a series of techniques, including X-ray diffraction (XRD), X-ray dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). XRD and EDS analyses confirmed the purity of the nanoparticles synthesized with an average nanoparticle crystallite size of 36 nm. TEM confirmed the successful synthesis of spindle-shaped MgO/ZnO core/shell nanoparticles with an average size of 70 nm. To evaluate their toxicity, the MgO/ZnO core/shell nanoparticles were tested in vivo. Twenty-five albino female rats were randomly divided into five groups (five rats in each group); one was used as the control group and the other four as the experimental groups. Doses of the MgO/ZnO core/shell nanoparticles solution were orally administered to the test groups to examine the toxicity. For 30 consecutive days, each rat in test groups 2-5 received 1 mL of the MgO/ZnO core/shell nanoparticles solution at the respective doses of 1.25, 2.5, 5, and 10 mg L -1 . The rats' growth, hematology, thyroid gland function, and histopathology were examined after 30 days. Findings indicate that the growth retardation in the rats treated with MgO/ZnO core/shell nanoparticles may be due to their infection by Hyperthyroidism . The hematology results show the nonsignificant effect of MgO/ZnO core/shell nanoparticles on white blood cells, implying that these nanoparticles have no harmful impact on the immune system. Moreover, the levels of the thyroxine and thyroid-stimulating hormones increased, and that of the triiodothyronine hormone decreased. The histological analysis results show that low concentrations of MgO/ZnO core/shell nanoparticles are safe for desired biomedical applications.
Keyphrases
  • room temperature
  • quantum dots
  • walled carbon nanotubes
  • high resolution
  • magnetic resonance
  • visible light
  • computed tomography
  • electron microscopy
  • cell proliferation
  • mass spectrometry
  • endoplasmic reticulum stress