Login / Signup

Isotopic analyses of Ordovician-Silurian siliceous skeletons indicate silica-depleted Paleozoic oceans.

Elizabeth J TrowerJustin V StraussErik A SperlingWoodward W Fischer
Published in: Geobiology (2021)
The Phanerozoic Eon marked a major transition from marine silica deposition exclusively via abiotic pathways to a system dominated by biogenic silica sedimentation. For decades, prevailing ideas predicted this abiotic-to-biogenic transition were marked by a significant decrease in the concentration of dissolved silica in seawater; however, due to the lower perceived abundance and uptake affinity of sponges and radiolarians relative to diatoms, marine dissolved silica is thought to have remained elevated above modern values until the Cenozoic radiation of diatoms. Studies of modern marine silica biomineralizers demonstrated that the Si isotope ratios (δ30 Si) of sponge spicules and planktonic silica biominerals produced by diatoms or radiolarians can be applied as quantitative proxies for past seawater dissolved silica concentrations due to differences in Si isotope fractionations among these organisms. We undertook 446 ion microprobe analyses of δ30 Si and δ18 O of sponge spicules and radiolarians from Ordovician-Silurian chert deposits of the Mount Hare Formation in Yukon, Canada. These isotopic data showed that sponges living in marine slope and basinal environments displayed small Si isotope fractionations relative to coeval radiolarians. By constructing a mathematical model of the major fluxes and reservoirs in the marine silica cycle and the physiology of silica biomineralization, we found that the concentration of dissolved silica in seawater was less than ~150 μM during early Paleozoic time-a value that is significantly lower than previous estimates. We posit that the topology of the early Paleozoic marine silica cycle resembled that of modern oceans much more closely than previously assumed.
Keyphrases
  • organic matter
  • mental health
  • depressive symptoms
  • transcription factor
  • radiation therapy
  • big data
  • mass spectrometry
  • artificial intelligence