Login / Signup

Assessing the reliability of predicted plant trait distributions at the global scale.

Coline C F BoonmanAna Benítez-LópezAafke M SchipperWilfried ThuillerMadhur AnandBruno E L CeraboliniJohannes H C CornelissenAndrés González-MeloWesley Neil HattinghPedro HiguchiDaniel C LaughlinVladimir G OnipchenkoJosep PenuelasLourens PoorterNadejda A SoudzilovskaiaMark A J HuijbregtsLuca Santini
Published in: Global ecology and biogeography : a journal of macroecology (2020)
Plant community traits can be predicted reliably at the global scale when using an ensemble approach and high-quality data for traits that mostly respond to large-scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.
Keyphrases
  • genome wide
  • electronic health record
  • dna methylation
  • big data
  • convolutional neural network
  • healthcare
  • mental health
  • machine learning
  • data analysis
  • artificial intelligence
  • deep learning