Login / Signup

Pt-Decorated Gold Nanoflares for High-Fidelity Phototheranostics: Reducing Side-Effects and Enhancing Cytotoxicity toward Target Cells.

Ke QuanXiaoyuan LiJiaqi DengWeiju ChenZhen ZouKun ChenLinlin WuJuewen LiuZhihe Qing
Published in: Angewandte Chemie (International ed. in English) (2024)
Functionalized with the Au-S bond, gold nanoflares have emerged as promising candidates for theranostics. However, the presence of intracellular abundantly biothiols compromises the conventional Au-S bond, leading to the unintended release of cargoes and associated side-effects on non-target cells. Additionally, the hypoxic microenvironment in diseased regions limits treatment efficacy, especially in photodynamic therapy. To address these challenges, high-fidelity photodynamic nanoflares constructed on Pt-coated gold nanoparticles (Au@Pt PDNF) were communicated to avoid false-positive therapeutic signals and side-effects caused by biothiol perturbation. Compared with conventional photodynamic gold nanoflares (AuNP PDNF), the Au@Pt PDNF were selectively activated by cancer biomarkers and exhibited high-fidelity phototheranostics while reducing side-effects. Furthermore, the ultrathin Pt-shell catalysis was confirmed to generate oxygen which alleviated hypoxia-related photodynamic resistance and enhanced the antitumor effect. This design might open a new venue to advance theranostics performance and is adaptable to other theranostic nanomaterials by simply adding a Pt shell.
Keyphrases