Login / Signup

The Novel Regulatory Role of lncRNA-miRNA-mRNA Axis in Amyotrophic Lateral Sclerosis: An Integrated Bioinformatics Analysis.

Dingsheng LiuXiaojia ZuoPeng ZhangRui ZhaoDonglin LaiKaijie ChenYuru HanGuoqing WanYanjun ZhengChanglian LuXuefeng Gu
Published in: Computational and mathematical methods in medicine (2021)
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that primarily affects motor neurons, causing muscle atrophy, bulbar palsy, and pyramidal tract signs. However, the aetiology and pathogenesis of ALS have not been elucidated to date. In this study, a competitive endogenous RNA (ceRNA) network was constructed by analyzing the expression profiles of messenger RNAs (mRNAs) and long noncoding RNAs (lncRNAs) that were matched by 7 ALS samples and 4 control samples, and then a protein-protein interaction (PPI) network was constructed to identify the genes related to ALS. Gene Ontology (GO) was used to study the potential functions of differentially expressed mRNAs (DEmRNAs) in the ceRNA network. For the ALS and control groups, 247177 potential lncRNA-mRNA ceRNA relationship pairs were screened. Analysis of significant relationship pairs demonstrated that the PPI modules formed by the MALAT1-regulated SYNRG, ITSN2, PICALM, AP3B1, and AAK1 genes may play important roles in the pathogenesis of ALS, and these results may help to characterize the pathogenesis of ALS.
Keyphrases